An analytical method to determine the impact of green space and water bodies on the micro-climate of urban areas for comparative analysis of towns

> Space-net Conference Ljubljana September 2015

Clemens Deilmann

Team: Martin Behnisch, Anne Bräuer, Clemens Deilmann, Iris Lehmann, Ulrich Schumacher

Land use pattern has impacts to the urban heat island

Geometric basis to represent settlement structures (structural analysis with GIS)

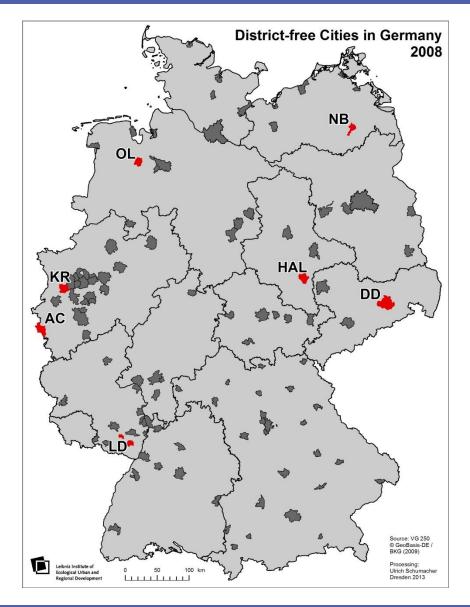
3 Indicators:

"Potential at-risk areas": is the ratio of densely built-up areas > 1 ha in the urban environment that do not lie near any green spaces and/or bodies of water

"Euclidean distance" is the distance between densely builtup areas and public green spaces or bodies of water as well as the green urban surroundings

"Affected population" translates the areas and building densities into the number of residents who live in such atrisk areas

Method


Use of official topographic geo-data set for entire Germany: **ATKIS Basis-DLM** ("urban areas", "built-up settlement areas", "green spaces", "waterbodies", "open space")

Indicators	"potential at-risk areas"	(1) Analysis of core areas (identification of areas outside the zone of influence of green space/water bodies) (2) Determination of coverage ratios (identification of areas with coverage ratio > 30% [highly dense structures]) (3) Overlay of core areas with densely built-up areas
	"Euclidean distance"	(4) Calculation of distances between densely built-up areas and green space/water bodies using raster data
	,,affected population "	(5) Correlation of at-risk areas with raster map of population data from national census

DRESDE

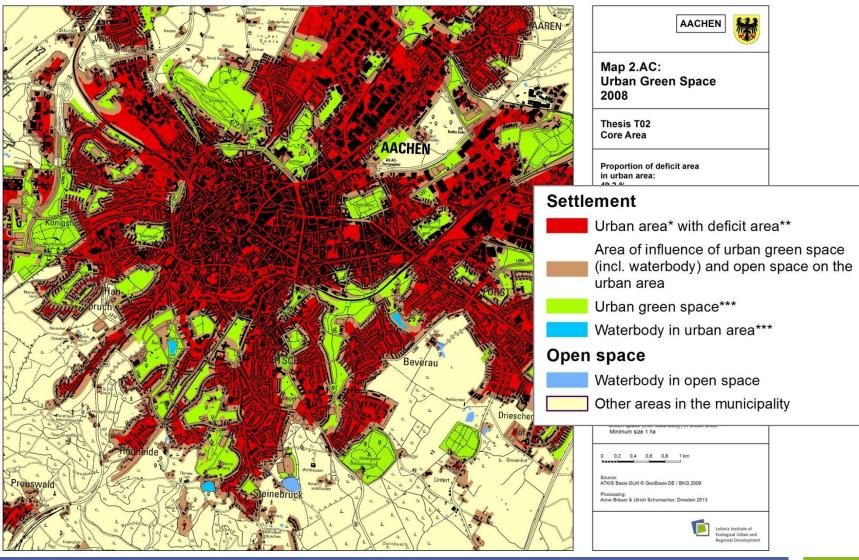
Case Studies

Selected Cities*

- NB Neubrandenburg
- OL Oldenburg (Oldb)
- HAL Halle (Saale)
- KR Krefeld
- DD Dresden
- AC Aachen
- LD Landau i. d. Pfalz

DRESDEN

concep


* Urban municipalities
 with contrasting settlement structures
 and > 40,000 inhabitants

Leibniz-Institut

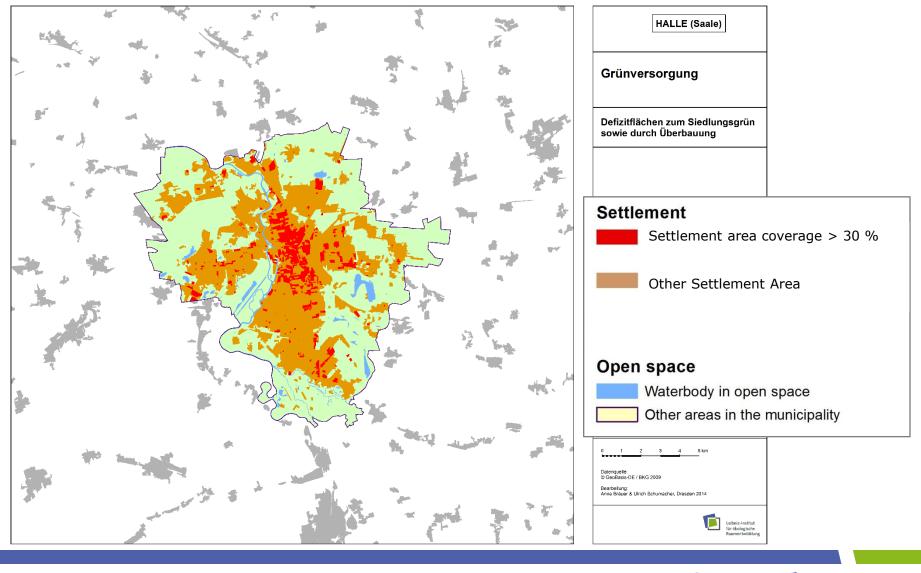
für ökologische

Raumentwicklung

(1) Analysis of core areas

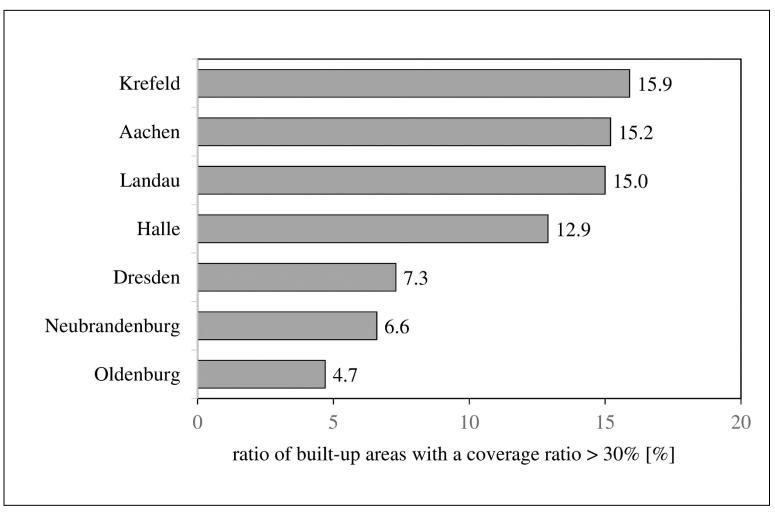
DRESDEN

concep



(1) Analysis of core areas - results

City	Ratio of core areas to the total settlement area [%]
Aachen	49
Dresden	44
Halle	46
Krefeld	54
Landau	55
Neubrandenburg	47
Oldenburg	54


(2) Identification of polygons with a coverage ratio >30 %

(2) polygons with a coverage ratio >30 % - results

Leibniz-Institut für ökologische Raumentwicklung

DRESDEN

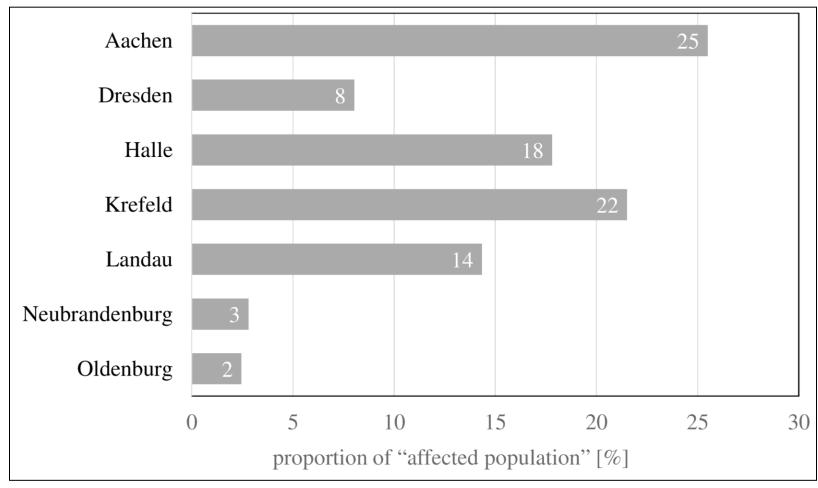
concep

(3) Overlay of core areas with the densely built-up structures – results

City	Ratio of at-risk areas * within settlement area [%]
Aachen	12.2
Dresden	4.7
Halle	8.8
Krefeld	12.8
Landau	11.0
Neubrandenburg	4.1
Oldenburg	3.2

*Area ratios indicating the extent of potentially critical sites in the settlement area on hot summer days (heat islands).

(coverage ratio > 30% and which are not adjacent to green spaces/water bodies or to outlying open space).


(4) Measuring the distance between densely built-up areas and green space/water bodies using raster data – results

Town/city	Average Euclidean distance to green space in settlement area (cell width = 100 m) [m]	Maximum Euclidean distance to green space in settlement area (cell width = 100 m) [m]
Aachen	368	943
Dresden	266	707
Halle	303	707
Krefeld	338	860
Landau	281	539
Neubrandenburg	254	632
Oldenburg	264	640

City comparison – distances (proximity values) characterising the accessibility of green spaces and bodies of water.

(5) Correlation of potential at-risk areas with the raster map of population data from the National Census 2011

City comparison – ratios of "affected population" in the investigated towns

Results – City Comparison

Multi-criteria assessment based on extremum normalisation of indicators

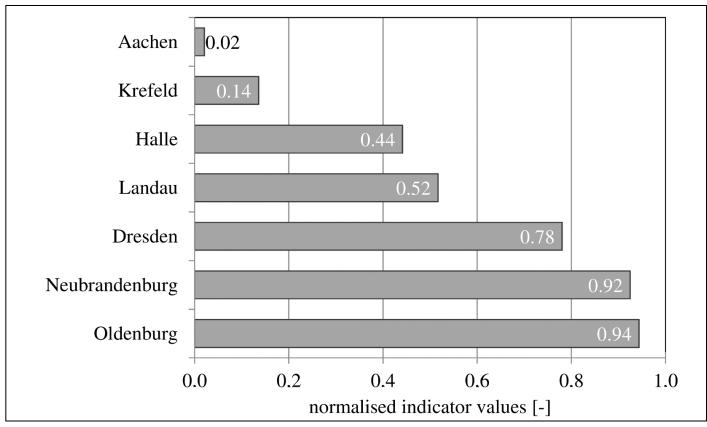


 Figure 9: City comparison on the microclimatic impact of green space and water bodies within the settlement area on the basis of a multi-factor assessment with normalisation of extreme values – the normalised indicator values are summed and then normalised a second time (Data source: © GeoBasis-DE / BKG 2009)

Conclusion

- "Visual" structural form analysis of urban areas can be linked with indicators of "good" life
- The comparative analysis presents Oldenburg (a city of predominantly single family homes) as "best" case
- Comparative analysis needs accompanying contrasting indicators to assess sustainability of urban form and land use pattern
- The presented results are part of a larger multicriterial analysis of cities → Outlook

Matrix of Analysis

	Main Topic (Thesis /"Leitbild")	Focus Area	Data Layer	Physiognomy						
No.				Comple- xity	Hetero- genity	Core Area	Proxi- mity	Split- ting	Other	Level
T01	Indentation of urban area and open space	м	UА	+	+	+				С
T02	Location and size of public green space in the urban area	UA	то			+	+			UD
т03	Fragmentation of urban area	М	UA		+		+			С
т04	Decentralized concentration of industry and commerce	М	UA,TO		+		+			С
т05	Spatial and environmental effects of traffic in the urban area	М	UA,TO					+		С
т06	Relations between building height, building distance and structure	BA	B,UST						+	UD
т07	Relations between site density and urban climate	М	B,UST			+				UD
т08	Influence of building compactness on urban ecology	UA	B,UST				+			UD
т09	Ratio of building volume to surface	М	В						+	UD
т10	Diversity of urban structures and their distribution	М	UST		+				+	UD

M – Municipality UA – Urban area

- UST Urban structure type
- TO Topographic object

BA – Built-up area

B – Building

C – City

Map scale 1:100,000

UD – Urban district Map scale 1:25,000

An analytical method to determine the impact of green space and water bodies on the micro-climate of urban areas for comparative analysis of towns

> Space-net Conference Ljubljana September 2015

Clemens Deilmann

Team: Martin Behnisch, Anne Bräuer, Clemens Deilmann, Iris Lehmann, Ulrich Schumacher

